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The Rebellion Number in Graphs 
V. Mohanaselvi and P. Shyamala Anto Mary 

 
Abstract - A set R⊆V of a graph G = (V, E) is said to be 

a ‘rebellion set’ of G, if │NR (v) │≤│NV\R (v) ││,, v ∈ R  and 

│R │ │V\R│. The rebellion number rb (G)   is the 

minimum cardinality of any rebellion set in G. In this 

paper, we defined rebellion number, strong rebellion 

number, global rebellion number, total rebellion number   

for simple graph. Also, we determined its tight bounds 

for some standard graph and characterize these 

parameters. 

 

Index Terms - Defensive alliance, global defensive 

alliance, global rebellion number, rebellion number, 

strong defensive alliance, strong rebellion number, and 

total rebellion number. 

——————————      —————————— 

 

1.INTRODUCTION 

LL the terms defined here are used in the sense of 

Harary. 

A graph is a finite non-empty set of objects called 

vertices or nodes together with a set of unordered pairs 

of distinct vertices of G, called edges or lines.The word 

alliance means a bound or connection between 

individuals, families, states or parties. The union of 

individuals in an alliance is thought of to be stronger 

than the sole individual. Alliance in graphs was first 

introduced by Kristiansen, Hedetniemi and Hedetniemi.  
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Suppose nations at war, the individual nations are 

represented as vertices and the relations between them 

are represented as edges [4]. In [5], the global (strong) 

defensive alliance and its number were introduced and 

their bounds are studied. The alliance numbers for 

planar graphs are introduced in [6]. The alliance 

numbers for planar graphs are introduced in [6]. The 

domination, accurate domination and accurate total 

domination for simple graph are refereed from [1], 

suppose nations at war, the individual    nations are 

represented as vertices and the relations   between   

them are represented as edges [4]. In [5], the global 

(strong) defensive alliance and its number were 

introduced and their bounds are studied. The alliance 

numbers for planar graphs are introduced in [6]. The 

domination, accurate domination and  accurate  total  

domination for simple graph are refereed from [1], [3]. 

A non-empty set of vertices, Sda ⊆V is called a 

defensive alliance if for every vertex V ∈ S, │N[v] ∩ S │ ≥ 

│ N (v) ∩ (V\S) │. The defensive alliance number is the 

minimum cardinality of all defensive alliance sets of G   

and it is also a dominating set of G. A set S ⊆ V is said 

to be a dominating set in G, if every vertex in V\S is 

adjacent to some vertex in S. The domination number of 

G is the minimum cardinality taken overall dominating 

sets in G and is denoted by γ (G). A dominating set with 

cardinality γ (G) is denoted by γ (G) – set. A total 

dominating set D of G is a dominating set such that the 

induced subgraph <D> has no isolated vertices. The 

total domination number of G is the minimum 

cardinality of a total dominating set of G. In this paper, 

we have introduced the rebellion set, strong rebellion 

set, global rebellion set, total rebellion set   by 

interchanging the inequality in the alliance set.  Also, 

we determined its tight bounds for some standard graph 

and characterize this parameters. 
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2. MAIN RESULTS 

Definition 2.1 

A set R⊆V of a graph G = (V, E) is said to be a 

‘rebellion set’ (reb set) of G, if │NR (v) │≤│NV\R (v) ││,   
and │R │ │V\R│. The rebellion number rb (G) is the 

minimum cardinality of any rebellion set in G.A 

rebellion set with cardinality rb (G) is denoted by  

  
Example 2.2 
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figure 2.1 

rb – set={v1,v2,v6} , rb(G)=3 

Definition 2.3 

  A set R⊆V of a graph G = (V, E) is said to be a ‘strong 

rebellion set’(srb– set) of G, if │NR(v)│≤│NV\R(v) │,│, v ∈ R   
and │R │ │V\R│. The strong rebellion number rbs (G) 

is the minimum cardinality of any strong rebellion set in 

G. A strong rebellion set with cardinality rbs (G) is 

denoted by rbs (G)–set. 
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Figure 2.2 

rbs– set={v1,v4,v5,v8} ,  rbs(G)=4 

 

Definition 2.5 

A rebellion set R of a graph G said to be global 

rebellion set ( grb – set), if R is a dominating set of G. 

The global rebellion number rbg (G) is the minimum 

cardinality of any global  rebellion set in G.A global 

rebellion set with cardinality rbg(G) is denoted by 

rbg(G)– set. 

 

Example 2.6 
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figure 2.3 

rbg–set={v3,v4,v5} ,  rbg(G)=3 

 

Definition 2.7 

A set R⊆V of a graph G = (V,E) is said to be a ‘total 

rebellion set’(trb– set) of G, if │NR(v)│≤│NV\R(v) ││,   
and │R │ │V\R│. The total rebellion number rbt (G)   is 

the minimum cardinality of any  total  rebellion set in 

G.A total rebellion set with cardinality rbt (G) is 

denoted by rbt(G)–set. 
 

Example 2.8 
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figure 2.4 

rbt– set={v2,v3,v6,v7,v11,v12} , 

srbt(G)= 6 

Theorem 2.9 

A rbg– set is a γ -set of G if and only iff G is 

isomarphic to P2 (or) K2. 

 

Remark 

 In general a dominating set need not be a rbg-set. 
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For example , 

1. 

e1 e2 e3 e4 e5 e6 e7

e8 e9 e10 e11 e12 e13 e14 e15

u1 u2 u3 u4 u5 u6 u7 u8

v1 v2 v3 v4 v5 v6 v7 v8

      G 

figure 2.5 

In this figure 2.5 , 

the reb– set R={u1,u2,u3,u4,u5,u6,u7,u8} is a rb– set   

of G. Hence rb (G) = 8. 

 Also, γ – set = {u1, u2, u3, u4, u5, u6, u7, u8} is a set of 

G  and hence γ (G)=8.Here the reb– set is a  γ – set of  

G and γ – set is the  reb – set of G. 
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Figure 2.6 

In this figure  2.6, the reb– set R={u,v1,v2,v3,v4} is a  

rb  – set of G. Hence rb (G) =5. 

Also, γ – set = {u, v} is a set of G and hence  

γ (G)=2. Here a γ – set is not the reb– set   of G. 

 

3. 

e1v1 v2 v3

v5 v6 v7

e2

e3 e4

e5

e6
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G 

Figure 2.7 

In this figure 2.7, the reb– set R= {v3, v4, v7, v8} is a  

rb– set of G. Hence rb (G) =4. 

Also, γ – set = {v2, v5, v6} is a set of G and hence  

γ (G) = 3.Here the reb– set is not a γ –set of G. 

Theorem 2.10 

For any graph , γ(G) ≤ rbg(G). 

Proof : 

Since every grb– set of G is a γ– set of G and hence 

the result. 

For example , the equality holds for P2 ,C4. 

v1 v2 v3 v4

e1 e2 e3

 
G 

Figure 2.8 

γ(G)=2 ,  rbg(G)=2 

Theorem 2.11 

If G is a non– complete graph with P≥5, then the  

induced  sub graph of a reb – set R disconnected. 

Proof : 

       Let G be a non– complete graph with five                 

       vertices. Suppose R is connected with minimum  

       number of three vertices say{v1,v2,v3}.Then every  

      vertices in R not satisfy the condition          

      │NR (v) │ ≤│NV\R(v) ││,which contradiction , R is a         

       rebellion set. Hence R must be disconnected. 

 

Theorem 2.12 

If G is a non – acyclic graph with odd number of  

vertices , then the rebellion Set R is not strong. 

Proof : 
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Let G be an odd order cyclic graph and R be   

rebellion  set of G. Take P=2r+1.Then R must  

contain  r+1 vertices. Also, there exist at least  

one │NR(v)│≤│NV\R(v) │,│, v ∈ R.  

which contradiction ,R is a rebellion  

set.  Hence the proof. 

       Theorem 2.13 

Every strong rebellion set of G is a global  

rebellion set. 

Proof: 

Let rbs be a strong rebellion set of G. Suppose  

rbg is not a global rebellion set. Then rbs  is not a  

dominating set of G. That is, there exist u ∈ V \ rbs 

and v ∈ rbs such that u & v are not adjacent. 

It gives │N rbs(v) │≤ │N V \ rbs(v) │which    

contradiction. rbs– set is a rbg– set of (G).  

Hence the proof. 

u

v1 v2 v3 v4 v5  

G 

Figure 2.9 

rbs– set ={v1,v3,v5} rbg– set={v1,v3,v5} 

Theorem 2.14 

Let G be a graph with p vertices and without  

isolated vertices. Then rbt (G) = 0 if and only if         

G = mK2 , m ≥ 1. 

Proof: 

For m =1 the result is obvious.  For m >1, suppose 

G ≠ K2,  then there exists a component in G which has a 

vertex v adjacent to atleast two vertices u and w. This 

implies that V-{v} is an total rebellion set  which is a 

contradiction. This proves the necessary part. 

The sufficient part is obvious. 

Theorem 2.15 

For any graph G with m cut vertices, then 

rb(G) ≤  m+1. 

Proof: 

Let S be the set of all cut vertices of G with  

S = m. Then  there exist u∈ S such that  

{V\S U {u}} is a rb– set. 

Therefore, rb (G) ≤ 
( ) 1

2
G∆ + 

  
. 

Hence, rb (G) ≤  m+1. 

Theorem 2.16 

For any graph G, rb (G) ≥ 
2
p 

  
 

Proof: 

Since the rebellion number rb(G)  is the minimum  

cardinality of any rebellion set in G then fro m the 

condition  of  rebellion number  we have                   

rb(G) ≥ 
2
p 

  
. 

Theorem 2.17 

For any graph G, rb(G) ≥
( ) 1

2
G∆ + 

  
 

Proof: 

For any  graph G , we have  the maximum degree                

∆ (G) ≤ p–1. 

Then  
( ) 1

2
G∆ + 

  
 ≤  

2
p

 ≤ 
2
p 

  
 ≤ rb (G). 

Hence, 
( ) 1

2
G∆ + 

  
 ≤ rb(G). 
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Theorem 2.18 

For the Path graph Pn ,  n ≥ 2 , rb(G)= 
2
n 
  

 

Proof: 

Let G be path graph Pn with atleast two vertices and R 

be an rebellion set in G. 

 Step 1: Since  rebellion  number rb(G)  is the           

minimum cardinality taken overall  rebellion set in G , 

we have rb(G) ≤ R =
2
n 
  

… (1) 

Step 2:  Suppose  R is a rb set of G. Then R has  at least  

2
n 
  

 number of vertices and hence  

rb(G)= R  ≥
2
n 
  

…(2) 

From (1) & (2) , the result follows. 

 

For example, 

 

e1 e2 e3 e4 e5 e6 e7 e8

v1 v2 v3 v4 v5 v6 v7 v8 v9

e10e9

v10 v11

 G 

Figure 2.10 

Rb– set = {v1, v3, v5, v7, v9, v11} , rb(G)=6 

Theorem 2.19 

For the Wheel graph Wn , n ≥ 2 , rb(G)= 
2
n 
  

+ 1 

Proof: 

Let G be Wheel graph Wn with atleast two vertices 

and R be a rebellion set in G. 

 

 

Step 1: Since rebellion number rb (G)  is the minimum 

cardinality taken overall  rebellion set in G , we have 

rb(G) ≤ R  =
2
n 
  

+ 1                                  …(1) 

Step 2: Suppose R is a rb set of G. 

Then R has at least  
2
n 
  

+ 1 number of vertices and 

hence   rb(G) = R  ≥
2
n 
  

+ 1                     …(2) 

From (1) & (2) ,the result follows. 

For example, 
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Figure 2.11 

rb-set={v1,v2,v5,v6,v8,v9} ,  rb(G)=6 
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